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The Hamiltonian description of the self-consistent interaction between an electromagnetic plane wave and a
copropagating beam of charged particles is considered. We show how the motion can be reduced to a one-
dimensional Hamiltonian model �in a canonical setting� from the Vlasov-Maxwell Poisson brackets. The
reduction to this paradigmatic Hamiltonian model is performed using a Lie algebraic formalism which allows
us to preserve the Hamiltonian character at each step of the derivation.
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I. INTRODUCTION

The interaction between electromagnetic fields and a
beam of charged particles exhibit a dynamics which is nowa-
days not fully understood, mainly due to the complexity in-
herent to the infinite-dimensional phase space. Although
some attention has been devoted to controlling those sys-
tems, a preliminary step is to shed light on the dynamics by
analyzing, for instance, phase space structures and transport
properties. In this general framework, reduced models have
proved to be very fruitful for this task. The reduction is of
course guided by the physics of a particular setting. For in-
stance, a beam of ultrarelativistic electrons interacting with
plane waves �whether these are external ones or produced by
the beam moving into an array of magnets, called undulator�
has shown to be a way for producing a coherent light source.
In what follows, we consider such a beam of electrons mov-
ing inside an undulator which produces a static �but nonuni-
form� magnetic field. The acceleration produced by the ex-
ternal magnetic field makes them emit a synchrotron
radiation, which is self-consistently interacting with the par-
ticles. Under some resonance condition, the intensity of this
electromagnetic wave grows exponentially and then satu-
rates. In order to capture this effect, a one-dimensional
Hamiltonian model has been proposed �1,2�. The reduced
Hamiltonian describes the evolution of the position � j and
relative momentum pj �around a resonant value� of the jth
particle. The N particles interact through a wave described
by its intensity I and phase �. It reads as

H = �
j=1

N � pj
2

2
+ 2�I sin�� j − ��� , �1�

where �� j , pj� and �� , I� are canonical pairs of conjugate
variables.

In the free electron laser �FEL� configuration, this model
has been derived from the equations of motion of charged
particles and Maxwell’s equations �1,2�. Some approxima-

tions were involved during the course of the derivation, and
were guided by the physics of the device, and among them, a
specific form for the radiated fields �as a plane wave�, a
one-dimensional reduction �obtained by reducing the dynam-
ics in the transverse plane�, an expansion around a resonance
fixed by the characteristics of the undulator. In addition, this
Hamiltonian model was also proposed to describe the wave-
particle interaction in other contexts, such as the beam-
plasma instability �3,4�, or the collective atomic recoil laser
�5�.

In this paper, we propose a derivation of the one-
dimensional Hamiltonian �1� for the self-consistent interac-
tion from the Vlasov-Maxwell equations in a Hamiltonian
setting. This allows us to show that at each step of the deri-
vation, the Hamiltonian structure of the problem is con-
served. In this way, it is ensured that no unphysical sources
of dissipation are introduced in the reduction procedure. An-
other advantage is that the conserved quantity �namely the
total momentum of the system� is also easily deduced from
the conserved quantity of the Vlasov-Maxwell equations.
Our approach follows from this algebraic framework: Instead
of working with the equations of motion for the derivation,
we consider the Hamiltonian and its associated Poisson
bracket �for an introduction, see Refs. �6,7��. By using a
canonical version, the Poisson bracket remains canonical �or
generalized canonical in a broader sense�. Therefore, the
main approximations and computations are done on a scalar
function, the Hamiltonian, which aims at simplifying the
derivation.

Such a Hamiltonian setting in an algebraic framework is
particularly well suited to the inclusion of additional effects
in the modeling of the interaction, like higher-order harmon-
ics, even a continuous spectrum of electromagnetic waves, or
space-charge effects. This framework is also suited to Hamil-
tonian control techniques, for instance, to control the jitter.

In Sec. II we recall some basics of the Hamiltonian for-
mulation of the Vlasov-Maxwell equations for a continuous
description of the particle distribution. In Sec. III, we apply
to this Hamiltonian system the approximations and reduction
necessary for the derivation of the reduced model �1� by
expressing first the Vlasov-Maxwell system into a canonical
setting �Sec. III A�, then performing the one-dimensional re-
duction �Sec. III B�, changing the reference frame �Sec.
III C�, and expanding the resulting Hamiltonian around a
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resonance condition �Sec. III D�. Finally, we deduce �Sec.
III E� a conserved quantity of the reduced model �1� from a
conserved quantity of the Vlasov-Maxwell equations by fol-
lowing the same procedure as for the reduction of the Hamil-
tonian.

II. HAMILTONIAN FORMULATION OF
VLASOV-MAXWELL EQUATIONS

The dynamics of Hamiltonian �1� follows from Hamil-
ton’s equations for each pair of canonically conjugate vari-
ables. More generally the dynamics of an observable F, func-
tion of phase space coordinates �	�i , pi
 , I ,��, is given by

dF

dt
= 	H,F
 , �2�

where the Poisson bracket between two observables is given
by

	F,G
 = �
i=1

N � �F

�pi

�G

��i
−

�F

��i

�G

�pi
� +

�F

�I

�G

��
−

�F

��

�G

�I
.

In a continuous setting, this Hamiltonian model can be ex-
tended in a straightforward way. The beam is now described
by a distribution function f�� , p� which constitutes a dynami-
cal field, i.e., for each location in phase space �� , p�, the
density of particles f�� , p�, labeled by the phase space coor-
dinates of the particles, evolves dynamically. The one-
dimensional Hamiltonian model is generalized from Hamil-
tonian �1�

H�f ,I,�� =� � d�dpf��,p�� p2

2
+ 2�I sin�� − �� , �3�

where the dynamical variables are now I and �, and a field of
variables f�� , p�. The dynamics of f , I, and � are obtained
using the canonical Poisson bracket

	F,G
 =� � d�dpf��,p�� �

�p

�F

�f

�

��

�G

�f
−

�

��

�F

�f

�

�p

�G

�f


+
�F

�I

�G

��
−

�F

��

�G

�I
, �4�

i.e., it leads to a Vlasov equation for f

�f

�t
+ p

�f

��
− 2�I cos�� − ��

�f

�p
= 0,

where we notice that df /dt=�f /�t since we use a Eulerian
description for the observables. This equation has been used
to estimate quantitatively some features of the dynamics, like
the derivation of a reduced dimensional model �8� or the
characteristics of the bunching in the saturated regime �9,10�.

If f is a Klimontovitch distribution, that is, the distribution
function is a sum of Dirac’s distributions representing some
point particles

f��,p� = �
j

�„� − � j�t�…�„p − pj�t�… ,

we recover the equations for Hamiltonian �1�.

The continuous formalism �3� and �4� is particularly well
suited for an algebraic treatment of the dynamics �see, e.g.,
�11��. In what follows we use Vlasov-Maxwell equations to
derive the Hamiltonian �3�. In order to do this we use a
Hamiltonian formulation of these equations. First, let us re-
call that the interaction between electromagnetic fields and
charged particles �of normalized mass m=1 and charge e
=1� is given as the sum of the kinetic energy of the particles
plus the energy of the field �12–14�,

H =� � d3qd3pf�q,p��1 + p2 +� d3q
�E�q��2 + �B�q��2

2
,

�5�

where f�q ,p� describes the distribution of particles in phase
space. Even though the kinetic energy of the particles and the
electromagnetic energy appear to be decoupled in the Hamil-
tonian, the interaction between the matter and the fields
comes from the bracket which gives the dynamics

	F,G
 =� � d3qd3pf� �

�p

�F

�f
·

�

�q

�G

�f
−

�

�q

�F

�f
·

�

�p

�G

�f


−� � d3qd3pfB · � �

�p

�F

�f
�

�

�p

�G

�f


+� � d3qd3p��F

�f

�f

�p
·

�G

�E
−

�G

�f

�f

�p
·

�F

�E


+� d3q��� �
�F

�B
� ·

�G

�E
−

�F

�E
· �� �

�G

�B
� .

�6�

This bracket satisfies the antisymmetry property, the Leibnitz
product rule, and the Jacobi identity. Here, the Lie algebra on
which this bracket operates is the set of smooth functionals
F�f�q ,p� ,E�q� ,B�q��. Using Hamiltonian �5� and the
bracket �6�, Eq. �2� allows one to retrieve Maxwell’s equa-
tions for E and B, as well as Vlasov equation for f ,

�f

�t
� ḟ = 	H, f
 = − v · �f − �E + v � B� ·

�f

�p
,

�E

�t
� Ė = 	H,E
 = � � B −� d3pvf ,

�B

�t
� Ḃ = 	H,B
 = − � � E ,

where v is the velocity

v =
p

�1 + p2
. �7�

We notice that the first line of the right-hand side of Eq. �6�
refers only to the particles �and it is canonical�, the second
and third lines are the field-particle interaction terms �nonca-
nonical terms� and the last line is a field-only term �which is
also canonical�.
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III. INTERACTION BETWEEN A PLANE WAVE
AND A COPROPAGATING BEAM OF PARTICLES

A. Expression of the Hamiltonian system in a canonical way

The Vlasov-Maxwell equations �5� and �6� can also be
described using the potentials instead of the fields �13�.
The Lie algebra is now a set of functionals
F�fmom�q ,p� ,A�q� ,Y�q��. The Hamiltonian and the bracket
become

H =� � d3qd3pfmom
�1 + �p − A�2 +� d3q

�Y�2 + �� � A�2

2
,

�8�

	F,G
 =� � d3qd3pfmom� �

�p

�F

�fmom
·

�

�q

�G

�fmom

−
�

�q

�F

�fmom
·

�

�p

�G

�fmom


+� d3q� �F

�Y
·

�G

�A
−

�F

�A
·

�G

�Y
� . �9�

This can be obtained from Eqs. �5� and �6� using the change
of coordinates

f�q,p� = fmom�q,p + A� ,

E = − Y ,

B = � � A .

We notice that this time, the Poisson bracket is canonical and
there is no term in this bracket which couples the particles
and the field. However, the coupling term is present in
Hamiltonian �8�.

We translate the potential vector by a static Aw�q�, which
is imposed externally �as in an undulator�. We notice that a
translation of A by a quantity Aw is a canonical transforma-
tion, which implies that the bracket �9� is not changed. The
new Hamiltonian reads as

H =� � d3qd3pfmom
�1 + �p − Aw − A�2

+� d3q
�Y�2 + 2 � � Aw · � � A + �� � A�2

2
,

where we have dropped the constant quantity �d3q��
�Aw�2 /2. In particular, we notice that the dynamics of the
radiated field is

Ȧ = 	H,A
 =
�H

�Y
= Y ,

which is equivalent to the equation for the radiated electric
field Er,

Er = −
�A

�t
.

For a wave copropagating with the electrons in the z direc-
tion, one can define the k mode of the wave as follows:

Ak�q�� =
1

L
� dze−ikzA�q� ,

Yk�q�� =
1

L
� dze−ikzY�q� ,

where q�= �x ,y� and L is the length of the cavity where the
interaction takes place. This gives the Fourier expansion in
the propagation direction Y�q�=�kYk�q��eikz and A�q�
=�kAk�q��eikz. Furthermore, since

�Ak�q��
�A�q��

=
1

L
e−ikz��q� − q�� � ,

which is obtained from the definition and linearity of the
functional derivative, it follows from the bracket �9� that

	Yk�q��,A−k��q�� �
 =
1

L
�kk���q� − q�� � .

Since we also have

	Yk�q��,Yk��q�� �
 = 	Ak�q��,Ak��q�� �
 = 0,

the field part of the bracket turns into

� d3q� �F

�Y
·

�G

�A
−

�F

�A
·

�G

�Y
�

=
1

L
�

k
� d2q�� �F

�Yk
·

�G

�A−k
−

�F

�Ak
·

�G

�Y−k
� .

We now consider the paraxial approximation both for the
radiated and external fields, i.e., we neglect their spatial
variations in the x and y directions, so that they are homo-
geneous in the transverse section S of interaction, and null
outside of it. We notice that this paraxial approximation is
the strongest approximation involved in the derivation pro-
cess. The dimensional reduction crucially depends on it. In
addition to this approximation, we restrict the derivation to a
monochromatic wave, i.e., we only take into account one
Fourier mode k in the propagation direction, and consider the
case of a circularly polarized radiated wave. Other modes
can be included in the derivation in a very similar way, but
we have only kept one mode for the sake of clarity of the
derivation. These two approximations allow us to define the
complex amplitude of the wave a such that

A = −
i

�2
�aeikzê − a*e−ikzê*� ,

Y = −
k
�2

�aeikzê + a*e−ikzê*� , �10�

with ê= �x̂+ iŷ� /�2. Conversely, a can be defined as
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a =
1

kV
� d3qe−ikz�− Y + ikA� · ê*

=
1

kS
� d2q��− Yk + ikAk� · ê*,

where V is the volume of the interaction domain, i.e., V
=LS with the above notations. Then, since

�a

�Yk�q��
= −

1

kS
ê*,

�a

�Ak�q��
=

i

S
ê*,

we obtain

	a,a*
 =
i

kV
,

so that a and a* are the new conjugate variables describing
the radiated field. Hence, the bracket turns into

	F,G
 =� � d3qd3pfmom� �

�p

�F

�fmom
·

�

�q

�G

�fmom

−
�

�q

�F

�fmom
·

�

�p

�G

�fmom
 +

i

kV
� �F

�a

�G

�a*
−

�F

�a*

�G

�a
� .

As for the Hamiltonian, since we have ��A=kA and �Y�2
=k2�A�2=k2aa* for the vector potential A, the energy of the
radiated wave now reads as

� d3q
�Y�2 + �� � A�2

2
= k2Vaa*,

where we have used the relations ê · ê=0 and ê · ê*=1. So that
the Hamiltonian becomes

H =� � d3qd3pfmom�1 + p2 + aa*

− i�2�aeikzê − a*e−ikzê*� · Aw + �Aw�2

− 2p� · �Aw + A��1/2 + k2Va*a

−
ikS
�2

� dz�aeikzê − a*e−ikzê*� · �� � Aw� .

B. Reduction to a one-dimensional model

Here we assume that the external field Aw created by the
undulator only depends on the longitudinal variable z. If the
beam of electrons has been injected in a proper way, we
show below that the motion is exactly described by a one-
dimensional Hamiltonian, allowing for a reduced—but
exact—description of the dynamics.

This reduction follows from the properties of the Liou-
ville operator H= 	H , · 
. Recalling that

�H

�fmom
= �1 + p2 + aa* − i�2�aeikzê − a*e−ikzê*� · Aw + �Aw�2

− 2p� · �Aw + A��1/2,

the Liouville operator reads as

H =� � d3qd3p
fmom

�1 + �p − �A + Aw��2

���p� − Aw − A� ·
�

�q�

�

�fmom
+ pz

�

�z

�

�fmom

− �A + Aw − p� ·
�

�z
�A + Aw�

�

�pz

�

�fmom


+
i

kV
� �H

�a

�

�a*
−

�H

�a*

�

�a
 .

The �
�p�

�
�fmom

term has disappeared since its factor ��A
+Aw� /�q� vanishes, as the fields are assumed not to depend
on the transverse direction q�. As a consequence, there is no
evolution for the particles distribution fmom�q ,p� along the
direction p�. This can be seen by considering a distribution
function of the following form:

fmom�q,p� = f̂�q,pz���p�� .

Under the Liouville operator, we see that Hfmom is also pro-
portional to ��p��, using an integration by parts and the fact
that

�fmom�q,p�
�fmom�q�,p��

= ��q − q����p − p�� .

We recall that p� has been translated by Aw in Sec. III A, so
in other words, if the beam is initially injected with the trans-
verse velocity Aw /�1+ �Aw�2 �from Eq. �7��, it remains with
this specific transverse velocity. Then, once restricted to the
��p�� distribution, it comes that the transverse profile of f
does not act on the longitudinal dynamics any more. In other
words, the set F of observables F which do not depend on
the transverse component of the distribution, i.e., F, such that

�

�q�

�F

� f̂
= 0,

is stable by H �i.e., HF�F if F�F�, since A and Aw do not
depend on q�. This allows one to focus on the longitudinal

dynamics by defining a reduced dynamics on F, with f̃�z , pz�
as the longitudinal distribution for the new variable associ-
ated with the particles. The bracket reduces to

	F,G
 =� � dzdpzf̃� �

�pz

�F

� f̃

�

�z

�G

� f̃
−

�

�z

�F

� f̃

�

�pz

�G

� f̃


+
i

kV
� �F

�a

�G

�a*
−

�F

�a*

�G

�a
� ,

and the Hamiltonian becomes
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H =� � dzdpzf̃�1 + pz
2 + aa* − i�2�aeikzê − a*e−ikzê*� · Aw + �Aw�2 + k2Vaa* −

ikS
�2

� dz�aeikzê − a*e−ikzê*� · �� � Aw� .

�11�

Since the motion is now one dimensional, we drop the label
z of the momentum in what follows.

C. Particles-field phase frame

While Hamiltonian �11� is reduced to distribution func-
tions with one dimension �one in space and one in momen-
tum�, it still contains some terms which are not specific to
the interaction, such as the term aa*. The emphasis can be
put on the interaction between the particles and the wave by
considering the dynamics into the particles-field phase
frame. We consider a specific medium for the interaction

between the particles and the radiated field. For example, we
can consider a linear undulator, such as in a free electron
laser. The transverse field produced by such an undulator
reads as

Aw =
aw

�2
�e−ikwzê + eikwzê*� . �12�

First we neglect the effects of finite size: The last term in Eq.
�11� vanishes since it is a sum of terms proportional to
�dze�i�k+kw�z terms. The Hamiltonian becomes

H =� � dzdpf̃�1 + p2 + aa* − iaw�aei�k+kw�z − a*e−i��k+kw�z�� + aw
2 + k2Vaa*.

In this Hamiltonian, the last term simply yields the propaga-
tion of the electromagnetic wave. Indeed, since 	k2Vaa* ,a

=−ika, it generates an e−ikt factor for a�t�, and so it is a pure
propagation term. This remark calls for a time-dependent
change of coordinates. This procedure is standard, e.g., in
quantum mechanics, and corresponds to the interaction rep-
resentation �15�. Since time is not a variable for this model,
we first need to extend phase space to add a new pair of
canonically conjugate variables with one being similar to
time. More precisely, we define the pair of conjugate vari-
ables �� ,E�, such that the new Hamiltonian and bracket read
as

Hext�f ,a,a*,E,�� = H�f ,a,a*� + E ,

	F,G
 =� � dzdpf̃� �

�p

�F

� f̃

�

�z

�G

� f̃
−

�

�z

�F

� f̃

�

�p

�G

� f̃


+
i

kV
� �F

�a

�G

�a*
−

�F

�a*

�G

�a
� +

�F

�E

�G

��
−

�F

��

�G

�E
,

so that �̇= 	Hext ,�
=1, which means that, practically, � is

identical to the evolution variable t. We now consider the

canonical change of variables � f̃ ,a ,a* ,� ,E�
→ � f̂ , â , â* , �̂ , Ê� such that

â = aeik�,

Ê = E + k2Vaa*

f̂�z,p� = f̃�z,p� ,

�̂ = � .

It can be checked that the symplectic form ikVda*∧da
+dE∧d� is conserved by this transformation. This results in
a conservation of the Poisson bracket, while the Hamiltonian
now reads as

Ĥ =� � dzdpf̂�1 + p2 + ââ* − iaw�âei��k+kw�z−k�� − âe−i��k+kw�z−k��� + aw
2 + Ê .
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Finally, the dynamics can be studied in the particles-field
phase frame, the latter phase being defined as �= �k+kw�z
−k�, by considering the change of variables

f̄��,p� = f̂�z,p�/�k + kw� ,

ā = â ,

Ē = Ê +
k

k + kw
� � d�dpf̄p ,

�̄ = � ,

where f̂ has been divided by k+kw for normalization pur-

poses. We notice that the term −k / �k+kw���d�dpf̄p has been

added to Ê in order to ensure the canonicity of the change of

coordinates which translates here into the condition 	Ē , f̄

=0. Here we have used the following properties of the func-
tional derivative: If we perform a change of variables of f ,

denoted f̃ = f �g, then the functional derivative of F̃� f̃�=F�f�
satisfies

�F̃

� f̃
=

�F

�f
�g� � g−1� ,

which is obtained in a straightforward way from the defini-
tion of the functional derivative.

Now that we have performed the time-dependent change
of coordinates and that the Hamiltonian is time independent,

the ��̄ , Ē� variables are somehow artificial and decoupled
from the other ones. It is more convenient to work in the
reduced space and drop this additional pair of variables. For
notation purposes, we drop the bars over the other variables.
The Hamiltonian now reads as

H̄ =� � d�dpf̄��1 + p2 + aw
2 − iaw�āei� − ā*e−i�� + āā*

−
k

k + kw
p . �13�

The resulting Poisson bracket is now written as

	F,G
 = �k + kw� � � d�dpf� �

�p

�F

�f

�

��

�G

�f
−

�

��

�F

�f

�

�p

�G

�f


+
i

kV
� �F

�a

�G

�a*
−

�F

�a*

�G

�a
� . �14�

D. Resonance condition and high-gain amplification

The next step is to expand the Hamiltonian �13� around a
resonant value. Following Eq. �2�, the Hamiltonian �13� and
bracket �14� yield the following equations of motion:

df

dt
= − �k + kw�� p

�1 + p2 + aw
2 − iaw�aei� − a*e−i�� + aa*

−
k

k + kw
� �f

��
+

aw�k + kw��aei� + a*e−i��
�1 + p2 + aw

2 − iaw�aei� − a*e−i�� + aa*

�f

�p

da

dt
= −

k

V
� � d�dpf

ia − awe−i�

�1 + p2 + aw
2 − iaw�aei� − a*e−i�� + aa*

.

From these equations it can be seen that the system is at
equilibrium for a=0 and f�� , p�=��p− pR�F���, where F���
is a distribution which satisfies �d�e−i�F���=0, and pR is
given by

pR

�1 + aw
2 + pR

2
−

k

k + kw
= 0.

This resonant momentum pR can be linked to a resonant
energy �R for the particles, defined by

�R = �1 + aw
2 + pR

2 = �1 + aw
2 k + kw

�kw�2k + kw�
. �15�

In the limit k	kw, the definition �15� of the resonant energy

yields the usual definition �R=�k�1+aw
2 � / �2kw� �see, for ex-

ample, �2��.
However, this equilibrium is unstable, and exposed to

small perturbations, the wave starts growing and destabilizes
the particles at p= pR. This instability is responsible for the
high-gain growth of the wave, which is taken advantage of in
devices such as FEL. The dynamics can be linearized around
this equilibrium point: Assuming the momenta of the par-
ticles remain close from the resonant one pR, we shift p by

pR, by defining f̂�� , p̂�= f�� , p� with p̂= p− pR. We also con-
sider that the amplitude of the radiated field is weak com-
pared to the resonant energy

�a� 
 �R.
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Then, Hamiltonian �13� expands, at the first order in a and

second order in p �we have dropped the hat over p̂ and f̂�, as
follows:

Hlin =� � d�dpf�1 + aw
2

�R
3

p2

2
−

iaw

2�R
�aei� − a*e−i�� ,

associated with the bracket �14�.
The equations of motion can be normalized through the

following change of variables:

f����,p�� =
1

�
f�� = ��,p = p�/�� ,

a� = �a .

Moreover, we include a rescaling of time t�=t, i.e., H�
=H /, and we consider a new Hamiltonian �H� with a new
Poisson bracket �−1	· , · 
 �which does not change the dynam-
ics�. Using

 =
1

�R
�aw

2 kw�k + kw/2�
2kV

�1/3

,

� =
2

k + kw
�2kVkw

2 �k + kw/2�2

aw
2 �1/3

,

� = �4k2V2kw�k + kw/2�
aw

�1/3

,

� = 2�2kVkw
2 �k + kw/2�

aw
2 �1/3

,

the Hamiltonian and the bracket become

H =� � d�dpf
p2

2
− i� � d�dpf�aei� − a*e−i�� ,

	F,G
 =� � d�dpf� �

�p

�F

�f

�

��

�G

�f
−

�

��

�F

�f

�

�p

�G

�f


+ i� �F

�a

�G

�a*
−

�F

�a*

�G

�a
� . �16�

Finally, the canonical change of variables �a ,a*�→ �� , I�
such that a=�Ie−i� �so that 	� , I
=1� allows one to retrieve
the Hamiltonian �3� associated with the bracket �4�.

E. Conserved quantities

Apart from H as given by Eq. �5�, the Hamiltonian system
of charged particles interacting self-consistently with electro-
magnetic fields has its total momentum as conserved quan-
tity, as it was reported in Ref. �14�,

P�f ,E,B� =� � d3qd3pfp +� d3qE � B .

We perform the same approximations and reductions as the
ones performed on the Hamiltonian �5�. In this way, we re-

cover the conserved quantity of the reduced model. For ex-
ample, in the canonical formulation �8� and �9�, the total
momentum turns into

P�fmom,A,Y� =� � d3qd3pfmom�p − A�

−� d3qY � �� � A� .

Furthermore, when considering a monochromatic, circu-
larly polarized plane wave such as the one given by Eq. �10�,
the total momentum is decomposed into a transverse and a
longitudinal component,

P��f ,A� =� � d3qd3pf�p� − A − Aw� ,

Pz�f ,A,Y� =� � d3qd3pfpz + k2Vaa*

+ k� d3q�Aw � Y� · êz.

When focusing on the longitudinal dynamics �see Sec. III B�,
the conserved quantities P� can be dropped since they pro-
vide information on the transverse dynamics. Then, when
considering the specific external field �12�, if we neglect the
finite-size effect, the last term of the longitudinal momentum
can be dropped, so that we obtain, for the Hamiltonian �13�,
the following conserved quantity:

Pz�f ,a,a*� =� � d3qd3pfp + k2Vaa*.

Using the same normalization as in Sec. III D, Pz becomes a
conserved quantity for the Hamiltonian �16�,

P =� � d�dpfp + aa*.

Finally, using the canonical change of variables
�a ,a*�� �� , I�, it becomes

P =� � d�dpfp + I ,

i.e., the average momentum plus the intensity is conserved
by Hamiltonian �3�.

IV. CONCLUSION

In this paper, we derived a reduced Hamiltonian for the
interaction between a wave and a beam of charged particles
driven by an external field, on the sole assumptions of trans-
verse fields and on-axis injection for the particles. A reso-
nance condition—around an unstable equilibrium point—has
been used to obtain a linearization of the dynamics. Finally,
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under the extra hypotheses of high-energy particles and weak
radiated field, a paradigmatic Hamiltonian has been retrieved
within a fully Hamiltonian treatment. The main advantage of
the present derivation is a fully algebraic framework which is
well suited to include additional effects, for instance, higher-
order terms in the expansions, or strategies using other har-
monics of the radiated field �16�. We have shown here that
this treatment allows one to recover some general features of

the Vlasov-Maxwell equations in a very natural way, such as
a conserved quantity of the flow.
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